🚀Dolly 2.0 – первая открытая 12B Chat-LLM, которую можно использовать в коммерческих продуктах
Databricks удивили! Ребята заметили, что все опен-соурсные ChatGPT-клоны либо используют LLaMA, в которой некоммерческая лицензия, либо используют данные, которые запрещают коммерческое использование (как например датасет инструкций от Alpaca, сгенерированный с помощью GPT-3).
В чем преимущество OpenAI перед опен-суорсом, если не брать в расчет размер GPU кластера? В данных. Чтобы дообучить ChatGPT было собрано много качественных диалогов и иструкций от реальных людей, ну, и плюс RL from Human Feedback (RLHF), где люди оценивали ответы языковой модели.
Было решено собрать свой датасет. В Databricks работает ≈5000 человек, их всех и попросили написать вручную несколько семплов для обучения клона ChatGPT. Нужно было составить качественные пары Вопрос-Ответ, либо Инструкция-Ответ, на которых можно было бы добучить опенсоурсную авторегрессионную LLM, которая умеет просто продолжать текст, а не вести диалог. В итоге с помощью пряников в виде бонусов за написание лучших примеров, было собран высококачественный датасет на 15000 семплов!
Далее, они взяли свежу языковую модель Pythia-12B от EleutherAI с MIT лицензией и дообучили на своем датасете, получив Dolly 2.0* которую тоже зарелизили под MIT лицензией вместе с кодом и весами. Разве не прелесть?
Умельцы уже кванитизовали Dolly 2.0 в 4 бита и ускорлили для запуска на CPU. Теперь ждём шага от OpenAssistant, которые по слухам зарелизят свою модел в ближайшие дни.
*Dolly 1.0 была обучена на тех же инструкциях, что и Alpaca.
Блогпост про Dolly 2.0
@ai_newz
Databricks удивили! Ребята заметили, что все опен-соурсные ChatGPT-клоны либо используют LLaMA, в которой некоммерческая лицензия, либо используют данные, которые запрещают коммерческое использование (как например датасет инструкций от Alpaca, сгенерированный с помощью GPT-3).
В чем преимущество OpenAI перед опен-суорсом, если не брать в расчет размер GPU кластера? В данных. Чтобы дообучить ChatGPT было собрано много качественных диалогов и иструкций от реальных людей, ну, и плюс RL from Human Feedback (RLHF), где люди оценивали ответы языковой модели.
Было решено собрать свой датасет. В Databricks работает ≈5000 человек, их всех и попросили написать вручную несколько семплов для обучения клона ChatGPT. Нужно было составить качественные пары Вопрос-Ответ, либо Инструкция-Ответ, на которых можно было бы добучить опенсоурсную авторегрессионную LLM, которая умеет просто продолжать текст, а не вести диалог. В итоге с помощью пряников в виде бонусов за написание лучших примеров, было собран высококачественный датасет на 15000 семплов!
Далее, они взяли свежу языковую модель Pythia-12B от EleutherAI с MIT лицензией и дообучили на своем датасете, получив Dolly 2.0* которую тоже зарелизили под MIT лицензией вместе с кодом и весами. Разве не прелесть?
generatetext = pipeline(model="databricks/dolly-v2-12b", torchdtype=torch.bfloat16, trustremotecode=True, devicemap="auto")
generatetext("Who is Shcmidhuber?")
Умельцы уже кванитизовали Dolly 2.0 в 4 бита и ускорлили для запуска на CPU. Теперь ждём шага от OpenAssistant, которые по слухам зарелизят свою модел в ближайшие дни.
*Dolly 1.0 была обучена на тех же инструкциях, что и Alpaca.
Блогпост про Dolly 2.0
@ai_newz
Источник: эйай ньюз
2023-04-13 09:16:57