Deja Vu: Contextual Sparsity for Efficient LLMs at...
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time
[Статья] [Код]
Гугл выдаст кучу статей с дежавю в названии:
🎉 Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in Self-supervised Learning.
🎉 DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction
🎉 DEJA VU: Continual Model Generalization For Unseen DomainsDeja-Vu: A Glimpse on Radioactive Soft-Error Consequences on Classical and Quantum Computations
🎉 Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation
🎉 Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Так что авторы немного прогадали с оригинальностью названия)
Перейдем же к сути дела.
Введение
Как известно, нейронные сети перепараметризованы, и имеет место значительная избыточность в весах моделей - значительную долю весов можно отбросить без заметной просадки в качестве. На этом свойстве основаны методы прунинга. Тем не менее, чтобы решать широкий круг задач foundation модель должна обладать значительным количеством параметров, чтобы хранить в себе большой обьем знаний. Потому добиться существенного сжатия и ускорения без просадки в качестве крайне затруднительно.
Однако, для конкретного запроса, будь то последовательность или иной тип входа, требуется лишь малая доля аккумулированного в модель знания. Чтобы взять интеграл от функции не требуется быть египтологом или знать всех представителей рода соколиных.
[Статья] [Код]
Гугл выдаст кучу статей с дежавю в названии:
🎉 Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in Self-supervised Learning.
🎉 DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction
🎉 DEJA VU: Continual Model Generalization For Unseen DomainsDeja-Vu: A Glimpse on Radioactive Soft-Error Consequences on Classical and Quantum Computations
🎉 Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation
🎉 Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Так что авторы немного прогадали с оригинальностью названия)
Перейдем же к сути дела.
Введение
Как известно, нейронные сети перепараметризованы, и имеет место значительная избыточность в весах моделей - значительную долю весов можно отбросить без заметной просадки в качестве. На этом свойстве основаны методы прунинга. Тем не менее, чтобы решать широкий круг задач foundation модель должна обладать значительным количеством параметров, чтобы хранить в себе большой обьем знаний. Потому добиться существенного сжатия и ускорения без просадки в качестве крайне затруднительно.
Однако, для конкретного запроса, будь то последовательность или иной тип входа, требуется лишь малая доля аккумулированного в модель знания. Чтобы взять интеграл от функции не требуется быть египтологом или знать всех представителей рода соколиных.
Источник: КПД
2023-12-28 21:28:19